Available 100% online Credit Hours Tuition Application Deadline Test Requirements
Yes 30 credits $439/cr. in-state and $549/cr. out-of-state*
December 1 or April 1 recommended, then rolling if space is available.
Fall and spring entry only. 

*This special E-Tuition Rate applies to out-of-state students enrolled in a fully online degree or certificate program.

Request Information

Program Requirements (30 credits)

  • A total of 15 credits of bioinformatics courses
  • 9 credits of enrichment courses
  • 6 credits of applied field experience are required
  • Transfer credit from other universities and programs may be possible
  • A minimum GPA of 3.0 must be maintained for the PSM in Bioinformatics

Sample Schedule

Fall First Year (6 cr)

  • SIE 507 Information Systems Programming (3 cr)
  • BMS 625 Biostatistics/Computational Biology or Genetics (2 cr)
  • INT601 Responsible Conduct of Research (1 cr)

Spring First Year (6 cr)

  • DIG 510 Metadata Systems (3 cr)
  • Plus Element course (3 cr)

Summer First Year (3 cr)

  • BMS 690 Computational Methods in Biomedical Science (3 cr)

Fall Second Year (5 cr)

  • SIE557 Database System Applications (3 cr)
  • BMS 625 Biostatistics/Computational Biology or Genetics (2 cr)

Spring Second Year (9 cr)

  • Plus Element course (3 cr)
  • Applied Field Research (6 cr)

Summer Second Year (3 cr)

  • Plus Element course (3 cr)

For more information on available Plus Element courses, visit the https://gsbse.umaine.edu/programs/psm-in-bioinformatics/.

The applied field experience will be self-directed and will be scheduled at the convenience of the student. With permission, other courses may be substituted for those listed for the Bioinformatics Core or Plus Element courses. In addition, as new courses are developed for online delivery, other courses may be added to the Bioinformatics Core and Plus Element courses as they become available. Prior graduate courses that have been taken by students, including courses considered for transfer will be evaluated on a case-by-case basis. The 6 credits of applied field experience are a cornerstone of the PSM degree. The applied field experience will integrate computer science, mathematics, biomedical sciences and plus element courses into a project that is relevant to the students’ current or future employment. The students will present their complete projects before a committee of faculty and industry leaders.


General Overview PSM in Bioinformatics

The Graduate School of Biomedical Science and Engineering (GSBSE) has developed a new online Professional Science Master program in bioinformatics. Bioinformatics is the application of mathematical, statistical, and computational approaches to understand biological processes. The PSM in bioinformatics is an online program and includes interdisciplinary classes across the fields of mathematics, computer science, spatial information science and engineering, and molecular and cell biology. GSBSE faculty from the University of Maine, the Jackson Laboratory, Mt. Desert Island Biological Laboratory, University of New England, University of Southern Maine and Maine Medical Center Research Institute teach the courses for this online degree program.

The PSM provides an opportunity for advanced training directly relevant to current knowledge for their professional careers.  Students entering the program are expected to come from a cell and molecular biology background and require more intensive training in math, computer and information science, or from the mathematics, computer or information sciences disciplines and need training in cell and molecular biology. The program requires fifteen credits of bioinformatics courses, nine credits of enrichment courses, and six credits of applied field experience.

Graduates of the Professional Science Master in Bioinformatics are prepared for a diverse range of careers in biotechnology, infectious diseases, pharmaceutical biomedical research, environmental sciences and forensics to name a few. The professional component of the program prepares our graduates for leadership roles in the commercial, government and non-profit markets.

The program’s interdisciplinary approach, depending on the student’s background can prepare you for positions as Computational Biologist, Biology Database Specialist, Bioinformatics Specialist, Bioinformatics Analysts among others.

As a graduate of the PSM in Bioinformatics, you will transform the landscape of business, technology and science and you will be part of a growing trend in in an emerging cross-disciplinary approach between the scientific and technical fields.

For more information on this program visit the Graduate School of Biomedical Science & Engineering website.

What is GSBSE?

What can I do with a PSM in Bioinformatics?

According to AAAS Science Journal, there is an “abundant demand for scientists with professional skills”. The Boston Globe called Bioinformatics a “high demand field within the life-sciences industry” further saying that “pay goes up dramatically for those with industry experience and with a master’s or doctoral degree”.  A March 2014 article in the New York Times called it “A Degree Where Techie Meets Business Smarts“.

Higher salaries are typically found in the private sector, which recognizes and values the PSM Program. As a graduate of the PSM in Bioinformatics, you are transforming the landscape of business, technology and science and you’re part of a growing trend in in an emerging cross-disciplinary approach between the scientific and technical fields.

Career Opportunities

  • Sequence Assembly: This involves the use of sophisticated computer-based methods to assemble the thousands of fragments that make up the genome of an organism.
  • Genomic Sequence Analysis: This involves mapping out the regions of a genome that code for a particular protein’s production. It also involves mapping out areas of the gene that is clipped out or discarded. All these are done using sophisticated software programs and results are then compared with databases of already mapped out genes.
  • Functional genomics: This is the process of determining the functions of genes and determining whether they would be suitable for drug discovery.
  • Genotyping: This involves the discovery of disease causing genes and using that knowledge to identify individuals who are susceptible to such diseases.
  • Proteomics: An offshoot of genomic studies, this is the study of the portion of a genome that is expressed in particular cells. This usually involves the use of micro-arrays (a cutting edge technology that allows the expression level of thousands of genes in a cell sample to be quickly determined) and the results are entered in a database. This area is especially useful for drug and/or gene therapy.
  • Pharmacogenomics: Here databases of single nucleotide polymorphisms (gene mutations that cause particular disease states or increased/decreased sensitivity to drugs) have an important role to play in future drug development efforts and in the design of clinical trials.
  • Database Administration: This usually involves the design and maintenance of huge databases of genomic sequence and biochemical information. These databases need to be constantly updated. There is also the involvement in the development of intelligent search algorithms to search through the database and retrieve relevant information.

Skills Needed

  • Informatics problem solving skills which include computer science and genomic expertise. This would include a good understanding of how and why DNA is transcribed into RNA and then expressed as proteins.
  • Database administration and programming skills (e.g. SQL Server, Oracle, Sybase, MySQL, CORBA, PERL, Java, C, C++, web scripting). UNIX tends to be the operating system used for many biological programs. Being able to write programs, especially using PERL and C, on this platform and using SQL, which tends to be the language used of querying relational databases where the biological information is stored, would be highly desirable.
  • Experience with genomic sequence analysis and molecular modelling programs would also be a good skill to possess for those looking to get into bioinformatics.
  • Act as an effective bridge between biologist and computers scientists, especially during the design of effective tools for data analysis, storage and retrieval.
  • Possess the necessary skills needed to effectively filter information and from possible relationships between datasets.


A strong applicant will have an undergraduate degree in the sciences, engineering, or related discipline, with an outstanding academic record and strong GRE scores. Students entering the program are expected to come from a cell and molecular biology background and require more intensive training in math, computer and information science, or from the mathematics, computer or information sciences disciplines and need training in cell and molecular biology. The general GRE examination is required for review by the GSBSE Admissions Committee, except when the applicant has an advanced degree, in which case this requirement is waived. The GRE subject examination is not required. Evaluation for admission will also consider the motivation and career goals of the applicant in addition to research experience and the strength of recommendations.

The application packet should include:

  • University of Maine Graduate School application
  • Letter of interest, including motivation to pursue an advanced degree
  • GRE scores
  • TOEFL scores, if appropriate
  • Three letters of recommendation from professional or academic references
  • Official academic transcript
  • Any other relevant information that will aid in the evaluation of the applicant

Applications are accepted on a rolling basis for Fall semester matriculation and program start. The application review process starts in early January. Notification of admission into the program occurs throughout the Spring.

To begin the application process, follow our helpful application guide here. When you’re familiar with the process you can begin your online application to the University of Maine Graduate School!

What students have to say about the PSM in Bioinformatics degree

photo of Yuka Takemon“Working as a full-time research assistant at the Jackson Laboratory I was exposed to many fields and techniques that were applied at the forefront of biomedical research. I was able to see first hand how bioinformatics was quickly becoming a critical component in understanding complex genetic diseases. I realized that pursuing a PSM in Bioinformatics through GSBSE while continuing my full-time job would allow me to contribute at a higher level at work and open more doors for my career. Since I live far enough from the Orono campus to make commuting difficult, having the option to attend live courses remotely, watch recordings, or even attend live courses taught by faculty at the Jackson Laboratory was one of the deciding factors to pursue this degree. One of the great things about the GSBSE courses is that faculty from partner institutions such as MMCRI, MDIBL, and JAX who are involved with cutting edge research are teaching the classes. Course materials are always relevant and up-to-date, and the professors are always receptive to questions. Both GSBSE Director, Dr. David Neivandt, and Special Assistant, Tammy Crosby, have been very accommodating, and have personally met with me to help me design a curriculum that fit my needs and goals. Since starting the PSM in Bioinformatics, I’ve been able to immediately apply what I’ve learnt in the classroom to my work. I’ve become a critical member of the lab with my bioinformatics knowledge and skill sets, and have also seen many opportunities open up before me at work. I would definitely recommend this program to those currently involved in research that want to develop bioinformatics skills to get a leg up in their career.” – Yuka Takemon

photo of Noreen Brenner“I entered the Bioinformatics Professional Science Master’s Program with an MA in biology (molecular, cellular and developmental biology or MCD). As a person with a background in biology, I found the PSM Program to be an extremely useful complement to my knowledge of biology, specifically MCD. In the PSM Program I was able to acquire knowledge of SQL, Python, Perl and R, crucial database management or programming languages, which are essential components of the bioinformaticist’s repertoire and can be applied to answer questions pertaining to MCD. For instance, one can use Perl programming to find a TATA box or any particular motif in a DNA sequence or one can use Perl to see if two proteins interact with one another. The software tool SQL can be used to query a biological database or modify it. R is used to conduct statistical analyses. In the program students learn to perform epistasis analyses to find out which of two interacting proteins is downstream. The Biostatistics/Computational Biology class teaches one how to do enrichment analyses, where you take a list of differentially expressed genes and found out which biological processes are represented in a statistically significant fashion. The classes offered in the PSM Program prepare the aspiring bioinformaticist to work with the tools that a bioinformaticist needs. My advice to the student aiming to successfully complete the PSM is to pre-study. Obtain the syllabi from the professors, get the textbooks and prepare for the class. Being ahead of the game is an advantage. The PSM Program has hired a bioinformaticist, Professor Benjamin King, to teach the essential class “Introduction to Bioinformatics”. Professor King is an excellent pedagogue with a lot of practical experience in bioinformatics. Note that Applied Field Research is a cornerstone of the program. Importantly, there are professors at UMaine, Jackson Lab and elsewhere whom one can take Applied Field Research in bioinformatics with, as they are knowledgeable about bioinformatics. The coordinator / chairperson of the program, Professor David Neivandt and Kristen Freeman, the special assistant to the chairperson, go out of their way to help students. My personal advisor has also been especially helpful. I whole-heartedly recommend the PSM Program in Bioinformatics to every prospective student wishing to obtain a firm foundation in the field.” – Noreen Brenner

How will your story go?

Biomedical Science and Engineering Faculty

Because the Graduate School of Biomedical Science and Engineering (GSBSE) has approximately 150 faculty members involved in the program, students have access to expertise in a broad range of research topics from world class leaders in these fields. The facilities available are all state-of-the-art, ranging from biomedical engineering fabrication and testing facilities, to cutting edge microscopy and spectroscopy centers, modern Zebrafish facilities, world class mouse facilities, animal imaging facilities, and genetic and bioinformatics resources.

Request Information

Our advising center can answer all of your questions about earning a degree or certificate through UMaineOnline.

Call us at 207.581.5858 or email us at umaineonline@maine.edu.

We look forward to speaking with you!